Lớp 9

Toán 9 Bài 4: Liên hệ giữa phép chia và phép khai phương

Trong bài liên hệ giữa các phép chia căn thức này, các em sẽ được làm quen với các quy tắc khai phương một thương, chia hai căn bậc 2 để áp dụng vào rút gọn biểu thứctính toán các giá trị.

1.1. Định lí

Với số a không âm và số b dương, ta có: \(\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}\)

Bạn đang xem: Toán 9 Bài 4: Liên hệ giữa phép chia và phép khai phương

1.2. Áp dụng

a. Quy tắc khai phương một thương

Muốn khai phương một thương \(\frac{a}{b}\), trong đó số a không âm và số b dương, ta có thể lần lượt khai căn của số a và số b, rồi lấy kết quả thứ nhất chia cho kết quả thứ hai.

b. Quy tắc chia hai căn bậc hai

Muốn chia hai căn bậc hai của số a không âm và số b dương, ta có thể lấy số a chia cho số b rồi khai phương kết quả vừa tìm được.

2.1. Bài tập cơ bản

Bài 1: Thực hiện phép tính các giá trị sau:

\(\frac{\sqrt{52}}{\sqrt{117}}\) ; \(\frac{\sqrt{2}}{\sqrt{18}}\)

Hướng dẫn: Ta có: \(\frac{\sqrt{52}}{\sqrt{117}}=\sqrt{\frac{52}{117}}=\sqrt{\frac{4}{9}}=\frac{2}{3}\)

Tương tự, ta có \(\frac{\sqrt{2}}{\sqrt{18}}=\sqrt{\frac{2}{18}}=\sqrt{\frac{1}{9}}=\frac{1}{3}\)

Bài 2: Rút gọn biểu thức sau:

\(5xy.\sqrt{\frac{25x^2}{y^6}}\) với \(x> 0; y\neq 0\) ;  \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}\) với \(x\neq 0;y\neq 0\)

Hướng dẫn: \(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\frac{5|x|}{y^3}=\frac{25x^2y}{y^3}=\frac{25x^2}{y^2}\)

Tương tự, ta có: \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}=\frac{0,2x^3y^3.4}{x^2y^4}=\frac{0,8x}{y}\)

Bài 3: Giải phương trình:

\(\sqrt{2}x-\sqrt{50}=0\) ; \(\frac{x^2}{5}-\sqrt{20}=0\)

Hướng dẫn: \(\sqrt{2}x-\sqrt{50}=0\Leftrightarrow \sqrt{2}x=\sqrt{50}\Leftrightarrow x=\frac{\sqrt{50}}{\sqrt{2}}=5\)

Tương tự, ta có: \(\frac{x^2}{5}-\sqrt{20}=0\Leftrightarrow \frac{x^2}{5}=\sqrt{20}\Leftrightarrow x^2=5\sqrt{20}\Leftrightarrow x=\pm \sqrt{\sqrt{500}}\)

2.2. Bài tập nâng cao

Bài 1: Rút gọn biểu thức sau:

\(\sqrt{\frac{27(a-3)^2}{48}}\) với \(a>3\) ;   \((a-b).\sqrt{\frac{ab}{(a-b)^2}}\) với \(a

Hướng dẫn: \(\sqrt{\frac{27(a-3)^2}{48}}=\sqrt{\frac{9}{16}}|a-3|=\frac{3}{4}(a-3)\) (vì \(a>3\) nên \(a-3>0\))

\((a-b).\sqrt{\frac{ab}{(a-b)^2}}=(a-b)\frac{\sqrt{ab}}{|a-b|}=(a-b)\frac{\sqrt{ab}}{b-a}=-\sqrt{ab}\) (vì \(a

Bài 2: Giải phương trình: \(\sqrt{x^2-8x+32}=4\)

Hướng dẫn: Cách 1 các bạn có thể bình phương hai vế rồi giải phương trình bậc hai bình thường
Cách 2: Ta thấy rằng \(x^2-8x+32=x^2-8x+16+16=(x-4)^2+16\geq 16\)
nên \(\sqrt{x^2-8x+32}\geq \sqrt{16}=4\)

Dấu “=” xảy ra khi và chỉ khi \(x^2-8x+16=0\Leftrightarrow x=4\)

3. Luyện tập Bài 4 Chương 1 Đại số 9

Qua bài giảng Liên hệ giữa phép chia và phép khai phương này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Nắm được các quy tắc khai phương một thương, quy tắc chia căn bậc hai

3.1 Trắc nghiệm Liên hệ giữa phép chia và phép khai phương

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 4 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Giá trị của biểu thức \(2y^2.\sqrt{\frac{x^4}{4y^2}};(y

    • A.
      \(-xy^2\)
    • B.
      \(xy^2\)
    • C.
      \(-x^2y\)
    • D.
      \(x^2y\)
  • Câu 2:

    Nghiệm của phương trình \(\sqrt{3}x^2-\sqrt{108}=0\) là: 

    • A.
      \(\sqrt{6}\)
    • B.
      \(\sqrt{5}\)
    • C.
      \(\pm \sqrt{5}\)
    • D.
      \(\pm \sqrt{6}\)
  • Câu 3:

    Giá trị của x trong phương trình \(\sqrt{(x-2)^2}=8\) là:

    • A.
      \(10\)
    • B.
      \(10\) và \(-6\)
    • C.
      \(-6\)
    • D.
      \(-8\)

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK Liên hệ giữa phép chia và phép khai phương

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 1

4. Hỏi đáp Bài 4 Chương 1 Đại số 9

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán Trường Cao Đẳng Sư Phạm Hà Nội sẽ sớm trả lời cho các em. 

Đăng bởi: Trường Cao Đẳng Sư Phạm Hà Nội

Chuyên mục: Giáo Dục Lớp 9

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!